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Abstract The issue of clustering proteins into homolo-

gous protein families (HPFs) has attracted considerable

attention by researchers. On one side, many databases of

protein families have been developed by using popular

sequence alignment tools and relatively simple clustering

methods followed by extensive manual curation. On the

other side, more elaborate clustering approaches have been

used, yet with a very limited degree of success. This paper

advocates an approach to clustering protein families

involving knowledge of the protein functions to adjust the

parameter of similarity scale shift. One more source of

external information is utilised as we proceed to recon-

struct HPF evolutionary histories over an evolutionary tree;

the consistency between these histories and information on

gene arrangement in the genomes is used to narrow down

the choice of the clustering.

1 Introduction

Similarity data is an important data type that emerges

naturally, for example, out of web interaction networks, as

well as from the analysis of complex data such as protein

sequences or foldings. On the one hand, there have been a

number of heuristic algorithms proposed for clustering

proteins and protein families (see, for example, [4, 7, 8, 18,

30, 32, 35, 37, 38]). On the other hand, there exists a long-

standing tradition of data recovery criteria and methods for

clustering similarity data (see, for instance, [14, 22, 33]).

Clustering methods considered in this paper are within this

second tradition and are, in essence, extensions of methods

proposed in [22, 23].

Before describing our approach and computational

results, we are going to point out the considerations related

to tackling issues in biology with a computational

approach—these are due to the different perspectives taken

by the biologist and computer scientist when looking at the

very basic concepts involved. The difference comes from

the notion that a biologist is interested in describing the

real phenomena in all their varieties, whereas a computer

scientist needs a tangible general principle for transfor-

mation of the available data into an output (similar issues

are treated in [2]). Consider, for example, such concepts as

‘homologous proteins’, ‘evolutionary tree’ and ‘principle

of parsimony’. For the biologist, homologous proteins are,

by their very definition, those descended from a common

ancestor. For the computer scientist this sounds somewhat

cryptic—it is not operational, at least in the beginning,

because the ancestry is not pre-specified and can be quite

murky, especially for viruses. Establishing homology for

proteins is an outcome rather than pre-requisite for the

computer scientist, who is thus left to rely mostly on the

proteins’ similarity. This is not that problematic when data
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of the protein structures are available; it is the protein’s

folding that mainly effects its function, and the folds are

much more conservative than the protein amino acid

sequence composition. Unfortunately, in our case the folds

are largely unknown; only about 7% of proteins under

study have their representatives among the Protein Data

Bank (PDB) structures [6]. That means that we are left with

protein sequence similarity as the major device for working

on homology. We do realise that common ancestry does

not necessarily imply sequence similarity. The question is:

how far can this bring us? How much of the homology can

be derived from the sequence similarity alone? It should be

pointed out that the usage of sequence similarity based on

computational tools for pair-wise or multiple alignment,

along with heavy manual curation, dominates in building

databases of homologous protein families such as COG

[38] or VIDA [1].

To address the issue, we utilise our method PARS [24]

for reconstructing evolutionary histories of the sets of

proteins that are hypothetically homologous. This brings us

to two further biologically charged terms: the evolution and

the principle of parsimony. A biologist may claim that the

concept of evolutionary tree is not quite applicable here

because, first, the virus is not strictly speaking a life form

and, second, the very concept of a fully resolved evolu-

tionary tree suggests the idea of progress as a constant

accumulation of complexity, which is not necessarily true

for the herpesvirus. A computer scientist, who has no

problems considering the evolution of computers or other

technical devices, would fail to understand the first argu-

ment. As to the second argument, the computer scientist

would say that the evolutionary tree bears a representation

of the evolution, and that whatever events are at odds with

the tree structure could be mapped to the tree as an addi-

tional annotation of its nodes and edges. With respect to the

principle of parsimony, a biologist would justly claim that

this principle applies in real evolution very rarely, if at all,

to which a computer scientist would answer that this

principle, an embodiment of Occam’s razor, is just a heu-

ristic tool for tackling a data reconstruction problem when

there is not enough substantive information available.

The list of possible misconceptions between biologists

and computer scientists can be further extended. They

would boil down to the following. The computer scientist

needs a general principle implemented in the algorithm to

start computation, and the biologist would point out that

there are many exceptions to the principle. The computer

scientist would reply that there must be some conditions

implying the exceptions, and these might become less

mysterious if one analyses discrepancies between a solu-

tion based on the initial principle and the real world data.

This paper is an example of such an approach; we start

from a general principle and then use additional

information to computationally advance in modelling a

complex molecular biology phenomenon.

Fortunately, for the herpesvirus genomes, there exists a

reliable reconstruction of their ancestral genome based on

various types of evidence [9, 20]. This allows us to judge

the quality of the computer-produced ‘‘homologous protein

families’’ (that we refer to as HPFs or APFs later in the

text) by comparing those that have made it to the last

ancestor of herpesvirus genomes according to our method

with those in the reconstruction of [20].

Accordingly, the following sections pursue several lines

of attacking the issue of the computational reconstruction

of protein families utilising, initially, sequence similarity

estimates and then whatever additional information is

available for the purpose.

First of all, we translate sequence similarity estimates

into set similarity estimates by moving from the usage of

protein sequences and VIDA database HPFs to their lists of

neighbouring proteins. This allows us to restrict the usage

of alignment scores only to cases of similar sequences, for

which the alignments are reliable. We can then set simi-

larity scores, which are more reliable, to develop a clus-

tering method based on modelling similarity data using

within-cluster intensities. We extract clusters one-by-one,

which not only finds them effectively, but also supplies

meaningful estimates of their intensity and contribution to

the data scatter. The clusters found in this way are inter-

preted as HPFs, so that we can map their histories to the

available evolutionary tree. The reconstruction has not

brought any unexpected items to the last common ancestor

of herpesvirus, HUCA in [20], which is encouraging. Yet,

it has left many of the ancestral HUCA genes of [20] to

‘emerge’ at much more recent nodes—because our original

HPFs were too fragmentary.

As another line of attack, we utilise a parameter of our

clustering model, analogous to the intercept of the regres-

sion line, that plays the role of a similarity shift applied

prior to clustering. This parameter is also a kind of simi-

larity threshold, so that entities whose similarity is less than

this value are unlikely to get combined in the same cluster.

The similarity shift is therefore substantively interpretable

unlike parameters used in other methods, such as the

number of clusters. Nevertheless, its value may strongly

affect the number and contents of the clusters. To deter-

mine an appropriate value for the similarity shift, we

analyse a set of pairs of HPFs whose functions are known.

The expectation is that proteins with the same function

should be more similar to each other than would be pro-

teins with dissimilar functions. This should indicate an

appropriate similarity value that could distinguish those

pairs that should be in the same cluster from those that

should not. The actual distribution of similarity scores

turned out to be more complex than we had hoped, so that
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not one but two reasonable similarity shift values emerged;

one would guarantee that HPFs with dissimilar functions

would be in different clusters, whereas the other would

give the minimum error in separating protein pairs with

similar and dissimilar functions. Both of these values are

derived using proteome knowledge.

The line of attack we employ uses the consistency

between the suggested reconstructions of ancestral gen-

omes and information on gene arrangement within them.

The remainder of the paper is organised as follows.

Section 2 describes our data recovery model for clustering

similarity data and a clustering method, ADDI-S one-by-

one clustering, derived from the model. Section 3 is

devoted to a description of the results of aggregating pro-

tein families with ADDI-S by using the neighbourhood

approach to measuring similarity. The substantive knowl-

edge used to identify similarity shift values is described in

Sect. 3.3. Results of mapping clusters onto an evolutionary

tree of herpesviruses and insight gained from our approach

are described in Sect. 4. In the conclusion we outline

possible future work.

The preliminary report of some of the work described

here, which previously appeared as a conference paper

[26], was more focused on the algorithms for evolutionary

reconstruction. In the current paper we focus on the clus-

tering process and, in particular, our clustering model. In

addition, we resolve the outstanding problem of the final

selection of the relevant clusters by utilising our evolu-

tionary reconstructions.

2 Clustering using the data recovery approach

2.1 Additive clustering and one-by-one iterative

extraction

Let I be a set of entities under consideration and let

A = (aij) be a symmetric matrix of similarities (or, syn-

onymously, proximities or interactions) between entities i,

j [ I.

The additive clustering model [21, 22, 33] assumes that

the similarities in A are generated by a set of ‘additive

clusters’ Sk � I; k ¼ 0; 1; . . .;K; in such a way that each aij

approximates the sum of the intensities of those clusters

that contain both i and j:

aij ¼
XK

k¼1

kksk
i sk

j þ k0 þ eij; ð1Þ

where sk ¼ ðsk
i Þ are the membership vectors of the

unknown clusters Sk and kk [ 0 are their intensities, k = 1,

2,..., K; eij are the residuals to be minimised.

The intercept value k0 C 0 can be interpreted as the

intensity of the universal cluster S0 = I that must be part of

the solution and, on the other hand, it can also be thought

of as a similarity shift, with the shifted similarity matrix

A0 ¼ ða0ijÞ defined by a0ij ¼ aij � k0: Moving k0 onto the

lefthand side of Eq. 1 yields the equivalent equation for the

shifted similarities a0ij: The role of the intercept k0 in Eq. 1

as a ‘soft’ similarity threshold is of special interest when k0

is user-specified because the shifted similarity matrix A0

may lead to different clusters for different values of k0.

To fit the model (Eq. 1), we apply a one-by-one cluster-

extracting strategy by minimising, at each step k = 1,..., K,

the criterion

L2ðS; kÞ ¼
X

i;j2I

ða0ij � ksisjÞ2; ð2Þ

and then define Sk and kk to be the solutions found for S and

k, respectively. It is easy to show that the optimal kk is the

average of the residual similarities a0ij: within Sk. The

residual similarities a0ij: are updated after each step k by

subtracting kksiksjk.

When the clusters are required to be disjoint, this

strategy can be implemented by removing the entities in

the cluster Sk from the set I and reducing the size of the

matrix A0 accordingly, after each step k.

The method, in both versions, leads to a decomposition

of the data scatter into the contributions of the extracted

clusters Sk (‘‘explained’’ by the model) and the minimised

residual square error (the ‘‘unexplained’’ part) [22].

2.2 One cluster clustering

In this section, we turn to the problem of minimisation of

Eq. 2 for extraction of a single cluster. Note that from now

on we use A to denote the shifted similarity matrix. It

should be noted that if A is not symmetric, it can be

equivalently replaced by the symmetric Â ¼ ðAþ ATÞ=2

[21, 23], so we assume that A is symmetric. For the sake of

simplicity, we also assume that the diagonal entries aii are

all zero.

2.2.1 Pre-specified intensity

When the intensity k of the cluster to be found is pre-

specified, criterion (Eq. 2) can be expressed as

L2ðS; kÞ ¼
X

i;j2I

ðaij � ksisjÞ2

¼
X

i;j2I

a2
ij � 2k

X

i;j2I

ðaij � k=2Þsisj: ð3Þ

Since k[ 0, minimising Eq. 3 is equivalent to

maximising the sum on the right,
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f ðS; pÞ ¼
X

i;j2I

ðaij � pÞsisj ¼
X

i;j2S

ðaij � pÞ; ð4Þ

where p = k/2.

This implies that, for any entity i to be added to or

removed from the S under consideration, the difference

between the value of Eq. 4 at the resulting set and its value

at S, f(S±i, p)-f(S, p), is equal to ±2f(i, S, p) where

f ði; S; pÞ ¼
X

j2S

ðaij � pÞ ¼
X

j2S

aij � pjSj:

This gives rise to a local search algorithm for

maximising Eq. 4: start with S ¼ fi�; j�g such that ai�j� is

a maximum element in A, provided that ai�j� [ p: An

element i 62 S may be added to S if f(i, S, p) [ 0; similarly,

an element i [ S may be removed from S if f(i, S, p) \ 0.

The greedy procedure ADDI [22] iteratively finds an i 62 S

maximising ?f(i, S, p) and an i [ S maximising -f(i, S, p),

and takes the i giving the larger value. The iterations stop

when this larger value is negative. The resulting S is

returned along with its contribution to the data scatter,

4p
P

i2S f ði; S; pÞ:
To reduce the dependence on the initial S, a version of

ADDI can be utilised that starts with the singleton S = {i},

for each i [ I in turn, and finally selects the resulting S that

contributes most to the data scatter, i.e. the one that

minimises the square error (Eq. 3).

The algorithm CAST [5], popular in bioinformatics, is a

version of the ADDI algorithm in which f(i, S, p) is written

as
P

j2S aij � pjSj and
P

j2S aij is referred to as the affinity

of i to S.

Another property of the criterion is that f(i, S, p) [ 0 if

and only if the average similarity between a given i [ I and

the elements of S is greater than p, which means that the

final cluster S produced by ADDI/CAST is rather tight; the

average similarity between i [ I and S is at least p if i [ S

and no greater than p if i 62 S [22].

Changing the threshold p should lead to corresponding

changes in the optimal S: the greater p is, the smaller S will

be [22].

2.2.2 Optimal intensity

When k in Eq. 3 is not fixed but chosen to further minimise

the criterion, it is easy to prove that:

L2ðS; kÞ ¼ ðA;AÞ � ½sTAs=sTs�2; ð5Þ

where the inner product (A,A) denotes the data scatter, i.e.

the sum of the squares of the elements of the matrix A.

The proof is based on the fact that the optimal k is the

average similarity a(S) within S, i.e.,

k ¼ aðSÞ ¼ sTAs=½sTs�2; ð6Þ

since sTs ¼ jSj:
The decomposition (Eq. 5) implies that the optimal

cluster S must maximise the criterion

g2ðSÞ ¼ ½sTAs=sTs�2 ¼ a2ðSÞjSj2 ð7Þ

or, equivalently, its square root, the Rayleigh quotient

gðSÞ ¼ sTAs=sTs ¼ aðSÞjSj; ð8Þ

over all binary vectors s.

To maximise g(S), one may utilise the ADDI-S algo-

rithm [22], which is a version of the algorithm ADDI/

CAST, described above, in which the threshold p is

recalculated after each addition/removal of an element to/

from S as half of the optimal k in Eq. 6. In an analogous

manner to ADDI, we apply ADDI-S starting from each of

the singletons {i} in turn, with p = 0, and finally selecting

the most contributing cluster.

A similar property to that for the constant threshold case

holds for the resulting cluster S; the average similarity

between i and S is at least half the within-cluster average

similarity a(S)/2 if i [ S, and at most a(S)/2 if i 62 S:

ADDI-S utilises no ad hoc parameters, so the number of

clusters is determined by the process of clustering itself.

However, changing the similarity shift k0 may affect the

clustering results, which can be of advantage in contrasting

within- and between-cluster similarities.

Figure 1 demonstrates the effect of changing a positive

similarity aij to a0ij = aij-k0 for k0 [ 0; small similarities

aij \ k0 are transformed into negative shifted similarities a0ij.

3 Proteome knowledge in determining similarity shift

3.1 Aggregation of proteins in protein families

In this section, we consider the aggregation of proteins into

homologous protein families (HPFs), which combine

ij

aij

Fig. 1 A pattern of clustering depending on the subtracted similarity

shift k0 represented by a dashed line on the graph. The y values

denote the similarity values, and the x values depict, for purely

illustrative purposes, the pairs of entities (i,j). Parts of the similarity

curve over one of the dashed lines represent clusters found with the

corresponding value k0. The higher the line, the smaller the clusters
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proteins from different genomes that have the same func-

tion and considerable sequence similarity. The concept of

HPF can be considered as an empirical expression of the

concept of a gene as a unit of heredity in intergenomic

evolutionary studies. As such, the HPF is an important

instrument in the analysis of the evolutionary history of the

function that it bears. The evolutionary history of a set of

genomes under consideration is depicted as an evolutionary

tree, or phylogeny, whose leaves are labelled by genomes

of the set, and whose internal nodes correspond to hypo-

thetical ancestors. An HPF can be mapped to the tree in the

following natural way. First, the HPF is assigned to the

leaves corresponding to those genomes containing its

members. Then the pattern of membership can be itera-

tively extended to all the ancestor nodes in a most parsi-

monious or most likely way. For example, if each child of a

node bears a protein from the HPF then the node itself

should bear the same gene, because it is highly unlikely

that the same gene emerged in the children independently.

Exact formulations of the algorithms, PARS for maximum

parsimony and MALS for maximum likelihood can be

found in [24, 26]. Having annotated the evolutionary tree

nodes with hypothetical evolutionary histories of various

HPFs, realistic conclusions concerning possible histories

and mechanisms of the evolution of biomolecular function

may be drawn for the purposes of both theoretical research

and medical practice.

Assignment of proteins to HPFs is often determined

with a large manual component because the degree of

similarity between proteins within an alignment of protein

sequences is not always sufficient to automatically identify

the families, especially for rapidly evolving organisms such

as bacteria and viruses.

This is why a two-stage strategy for identifying HPFs

has been considered by the authors in [26]. According to

this strategy, HPFs are created, first, as groups of proteins

that have a common motif, a contiguous fragment of pro-

tein sequence that is similar in all members of the HPF.

This motif represents a relatively well conserved segment

of the genetic material that can be associated with a protein

function. Obviously such motif-defined HPFs may be

overly fragmented since (1) some functional sites, contig-

uous in the spatial fold, may correspond to discontiguous

fragments of protein sequences, and (2) different fragments

of multi-functional proteins may bear resemblances to

unrelated proteins.

The fragmented HPFs may then lead to incorrect

reconstructions of functional histories, such as those pre-

sented in Fig. 2. The reconstructed ancestral nodes exhibit

the first emergence of the HPFs, labelled by differently

patterned squares and shown with circles at nodes A1 and

A2. These histories, however, may be due to an erroneous

aggregation; the three HPFs may, in fact, bear similar

proteins and thus should be combined into a single

aggregate HPF, whose origin then ought to be in the root of

the tree corresponding to the ultimate ancestor LCA.

Therefore, the next stage of the strategy is to cluster the

first stage HPFs into larger aggregations. Since entities at

this stage are not single proteins but protein families, we

need to score similarities between families rather than

single proteins. This issue will be covered in the next

section, after the data we deal with are described in a

greater detail.

3.2 Neighbourhood similarity between HPFs

The data for this analysis come from studies of herpesvi-

rus—a pathogene significantly affecting both animals and

humans. A set of 30 complete herpesvirus genomes cov-

ering the so-called a, b and c herpesvirus superfamilies,

which differ by the tissue in which the virus resides, have

been extracted from the herpesvirus database VIDA,

release 3 [1] (see Table 1), and an evolutionary tree has

been built over the genomes for the conserved DNA

polymerase gene, using the neighbour-joining procedure

from the PHYLIP package [11] (see Fig. 3). This tree

agrees well on the set of coinciding genomes, within the

acknowledged uncertainty limits, with previously pub-

lished herpesvirus phylogenies [19, 20] and, moreover, all

of the results reported here also hold for the other topology.

A set of 740 homologous protein families (HPFs) rep-

resented in these 30 genomes has been extracted from the

VIDA database [1]. Each VIDA HPF is defined by a

conserved fragment in the proteins constituting the HPF;

these were computed using the XDOM software [1, 13]. In

B C F GD E H I L

A1

A2

LCA

A

Fig. 2 An evolutionary tree over genomes A to L with three protein

families (shown differently patterned, with white squares denoting

genomes in which all three families are absent) present in genomes C,

D (Family 1), H, I, L (Family 2), and G (Family 3). The reconstructed

ancestors for Families 1 and 2 are shown with circles at nodes A1 and

A2, respectively. That in G remains as is. If, however, these three

families were recognised as parts of the same family, then their

reconstructed ancestor ought to be placed at the root node LCA
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this way, each HPF is assumed to represent a basal func-

tional grouping, whose origin can be mapped to the evo-

lutionary tree under the assumption that the function is

inherited according to the tree topology. As pointed out

above, such motif-based protein family assignment can

suffer both from fragmentation and from the non-assign-

ment of proteins to a family due to lack of pairwise

similarity.

To further aggregate the VIDA HPFs, we have to

develop a system for scoring the similarity between them.

Perhaps the most straightforward idea would be to first

score similarities between proteins belonging to different

HPFs and follow-up by averaging them. Another approach

would dwell on the fact that VIDA HPFs may overlap,

sometimes significantly, because different HPFs can be

defined by different fragments of the same sequences.

According to this approach, similarity between HPFs

should reflect the set-theoretic similarity between them as

‘bags’ of proteins. We follow an intermediate approach by

using the set-theoretic similarity, not between the VIDA

HPFs themselves, but rather between their neighbourhoods

defined by using the popular sequence alignment tool PSI-

BLAST [3]. Given a VIDA HPF, this approach works as

follows. First, for every protein from the HPF a list of

similar proteins is created using PSI-BLAST. Second, these

lists are combined according to a majority rule. The

resulting set of proteins constitutes the HPF’s neighbour-

hood. Note that it consists of proteins, not HPFs. The third

step is to compute a matrix of set-similarity values between

the HPF neighbourhoods for each pair of HPFs.

There are several features that encouraged us to use this

approach. One of them is the issue of the accuracy of the

alignment of protein sequences in scoring the similarity

between them. Alignment tools, including PSI-BLAST [3],

which we utilise, rely on a number of user-defined

parameter values, which are usually specified by default

options based on experiments. These parameter values

work quite well when sequences are indeed similar.

However, there is great uncertainty about the appropriate

values when proteins are less similar, which is a typical

situation when proteins are from different HPFs. Therefore,

by limiting the use of PSI-BLAST to align only similar

sequences, we avoid the uncertainty and arbitrariness of

similarity estimates for distant protein sequences.

Another feature relates to the idea that neighbourhoods

may give more reliable information on functional aspects

of proteins. There are many examples of proteins, espe-

cially virus-encoded proteins, whose pair-wise similarity is

low, but which are known to be functionally related and

which have many common neighbours. For example, the

glycoprotein-H-like protein of murine herpesvirus 4 (gi:

1246777) and the UL22 protein of Bovine herpesvirus 1

(gi: 1491636) have minimal sequence identity (15% iden-

tified on the second PSI-BLAST iteration), and were ini-

tially assigned to separate HPFs within the VIDA database,

namely HPFs 12 and 42 [1]. However, their sets of protein

neighbours (with 20% or greater sequence identity) contain

25 and 20 sequences, respectively, and have 14 common

proteins, making the overlap between the neighbourhood

lists quite significant: the average relative overlap is 63%

(14/25 = 56% in one set and 14/20 = 70% in the other).

To alleviate this difficulty, PSI-BLAST runs are conven-

tionally iterated in order to accrue distantly related pro-

teins. This, however, may import irrelevant proteins or

proteins that are not within the organism group under

investigation. An HPF obtained in this way requires man-

ual curation, but the overlap between the neighbourhood

Table 1 List of 30 herpesvirus genomes under consideration

# VIDA ref. Genome GenBank ref.

Alphaherpesvirinae

01 CeHV-1 Cercopithecine hv 1 NC_004812

02 HHV-1 Human hv 1/simplex 1 NC_001806

03 HHV-2 Human hv 2/simplex 2 NC_001798

04 EHV-4 Equid hv 4 NC_001844

05 EHV-1 Equid hv 1 NC_001491

06 BoHV-1 Bovine hv 1 NC_001847

07 BoHV-5 Bovine hv 5 NC_005261

08 CeHV-7 Cercopithecine hV 7 NC_002686

09 HHV-3 Human hv 3/varicella-zoster NC_001348

10 MeHV-1 Meleagrid hv 1 NC_002641

11 GaHV-2 Gallid hv 2/Marek’s disease NC_002229

12 GaHV-3 Gallid hv 3 NC_002577

13 PsHV-1 Psittacid hv 1 NC_005264

Betaherpesvirinae

14 HHV-6 Human hv 6 NC_001664

15 HHV-7 Human hv 7 NC_001716

16 HHV-5 Human hv 5/cytomegalovirus NC_006273

17 ChCMV Chimpanzee cytomegalovirus NC_003521

18 MuHV-2 Murid hv 2/rat cytomegalovirus NC_002512

19 TuHV Tupaiid hv NC_002794

Gammaherpesvirinae

20 HVS-2 Saimiriine hv 2 NC_001350

21 AtHV-3 Ateline hv 3 NC_001987

22 EHV-2 Equid hv 2 NC_001650

23 BoHV-4 Bovine hv 4 NC_002665

24 MuHV-4 Murid hv 4/murine hv 68 NC_001826

25 RRV-17577 Macaca mulatta rhadinovirus NC_003401

26 HHV-8 Human hv 8/Kaposi’s sarcoma NC_003409

27 AIHV-1 Alcelaphine hv 1 NC_002531

28 CeHV-15 Cercopithecine hv 15 NC_006146

29 HHV-4 Human hv 4/Epstein-Barr NC_001345

30 CaHV-3 Callitrichine hv 3 NC_004367
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lists suggests that our computational strategy may be useful

in overcoming this problem.

A further feature relates to the combining of individual

neighbourhoods of protein sequences into an HPF neigh-

bourhood. The set of HPF member proteins covers an

evolutionary time span during which they have developed

from a hypothetical ancestor. It is assumed that the greater

the difference between sequences, the greater the time at

which they diverged. This phenomenon should be reflected

in the composition of the neighbourhood lists. That means

that we can regulate the time span taken into account by

choosing different majority thresholds when combining the

neighbourhoods. This may provide an alternative to the

way PSI-BLAST seeks more distant relatives by relying on

the statistical frequency profiles [3].

The idea of employing neigbourhoods to measure sim-

ilarities between entities is not new. It has been used in

information retrieval, originating probably from the work

in [16, 34]. It has been employed in bioinformatics as well,

mostly in the analysis of gene expression data (see, for

example, [35]). From the perspective of clustering complex

data, this approach allows for a unified framework of

between-subset similarities rather than individual frame-

works of specific similarity measures.

Let us describe in more detail how we compute the

neighbourhoods of HPF members and combine them into a

majority set. Given a query protein sequence p, we utilise

the PSI-BLAST program [3] to sort all protein sequences

under consideration (we use those in the GenBank at the

NCBI Entrez web site [28]) by their similarity to the query

sequence. An initial fragment of this sorted list, defined by

a contrasting cut-off similarity value, is identified. The list

of all those proteins from this fragment that are also present

in our collection of herpesvirus genome protein sequences

constitutes the ‘‘homology neighbourhood’’ (HN) of p,

denoted by l(p).

To measure similarity between two HPFs, we compare

their HN sets, L1 and L2, by relying on the quantities

involved: the size of the overlap between L1 and L2,

denoted by n, the number of elements in L1 denoted by

n1, and the number of elements in L2 denoted by n2. The

most popular similarity index is the Jaccard coefficient

J ¼ n
n1þn2�n; this reasonably takes into account all three

numbers, but suffers from an intrinsic flaw by systemat-

ically underestimating the similarity [25]. In the literature,

a number of symmetric versions of the most natural

indexes, the relative sizes of the overlap, n
n1

and n
n2
; have

been proposed. However, we can take these directly to

measure similarity of L2 to L1 by n
n1

and similarity of L1

to L2 by n
n2
: We may obtain a symmetric measure by

simply using their average, corresponding to the sym-

metrisation of the matrix A in the context of our clus-

tering model, as described in Sect. 2. This measure,

mbc ¼ 1
2
ð n

n1
þ n

n2
Þ; known as the Maryland Bridge coeffi-

cient, alleviates the problems related to the Jaccard

coefficient [25].
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The similarity between two clusterings as sets of clusters

is defined by the averaged mbc index applied to the situ-

ation when entities are clusters and two clusters are con-

sidered the same if they are either equal or one is a subset

of the other, differing by not more than two elements.

Given a protein family h consisting of m proteins p1,

p2,..., pm, with herpesvirus constrained HN sets l(p1),

l(p2),..., l(pm), respectively, we aggregate these sets by

using the following majority rule. We assign a membership

score s(p) to each sequence p [ h. This score s(p) is defined

as the proportion of these HN sets to which p belongs; this

is therefore 1 if p belongs to all m of the sets.

Given t, 0 \ t B 1, the t-majority list Mt(h) is defined as

the set of those p for which s(p) C t. For t = 1/2, M1/2(h) is

the so-called simple majority list. As t decreases, the size of

Mt(h) can only increase, so that for t B 1/m the t-majority

list Mt(h) is the set-theoretic union of the l(pi) for all pi [ h,

and obviously the M1(h) is their intersection.

To determine an appropriate value for the majority

threshold t, we accept the view that the proteins in an HPF

have developed over a period of time; thus, the longer the

time period spanned by the t-majority list proteins, the

smaller should be the value chosen for t (we do not, at this

stage, take into account the fact that the speed of evolution

may be different in different parts of the tree at different

times).

In the case under consideration, the majority threshold

was set at the level of 20%, i.e. t = 1/5, based on the

analysis of clusterings of VIDA HPFs produced for

neighbourhoods defined at different thresholds. More spe-

cifically, we first computed, for all HPFs, t-majority lists

for t = 1/2, 1/3, 1/4,.... For each t, we obtained the simi-

larity matrix for the HPFs using the mbc index between the

majority lists; then we clustered the HPFs by using the

disjoint cluster version of one-by-one iterative extraction

with the ADDI-S algorithm described in Sect. 2, for values

of the similarity shift k0 between 0 and 1, at intervals of

0.05. We then analysed the similarities between the clus-

terings obtained for different values of t.

The reasons for choosing the majority threshold t = 1/5

were:

1. Given two threshold values, t1 and t2, we computed the

median of the mbc similarity values for all pairs of

clusterings, one for t1 and one for t2, for different

values of k0. These medians for ‘‘neighbouring’’ t

values were: 0.98 for t1 = 1/6 and t2 = 1/5; 1.00 for

t1 = 1/5 and t2 = 1/4; 0.99, for t1 = 1/4 and t2 = 1/3;

0.96 for t1 = 1/3 and t2 = 1/2. The average mbc

similarity value varied similarly, taking its maximum

for t1 = 1/5 and t2 = 1/4. The median similarity

between clusterings at non ‘‘neighbouring’’ t1 and t2
values were slightly lower. Overall, clusterings

produced for the different values of k0 did not differ

much.

2. The clustering found for t = 1/5 is ‘‘central’’ in the

sense that it is more similar to the other clusterings

than is the case for any of the other thresholds

considered.

3. The clustering found for t = 1/5 is more similar than

those for the other thresholds to clusterings produced

by using the mbc similarities between the homology

lists obtained with the iterated PSI-BLAST search [3],

starting from random proteins in an HPF (The iterated

PSI-BLAST search, over an averaged profile of the

first search results, allows one to catch more distant

homologues to the query sequence [3]. The median

similarity between the clusterings for t = 1/5 and the

clusterings found for HPF neighbourhood lists was

0.91 after the first iteration; 0.82 after the second

iteration; and 0.50 after the third iteration. We consider

these results as supporting our view that repeated

iterations of PSI-BLAST may need manual curation.).

3.3 Utilising proteome knowledge

A cluster of VIDA HPFs will be referred to as an aggregate

protein family (APF). For different similarity shifts we

obtain different numbers of clusters of HPFs. Specifically,

for the zero similarity shift, k0 = 0, there are 99 non-sin-

gleton clusters. As k0 increases, the number of clusters rises

to 107 for k0 = 0.10 and then eventually gradually

decreases from k0 = 0.40 onwards, so that there are only

29 non-singleton clusters for k0 = 0.97. Note that this

latter number corresponds to the situation when the HN

sets of the clustered HPFs are practically the same; to

overlap at the level of 97% or more, any two majority lists

with fewer than 30 elements (this is true for almost all

HPFs) must be identical.

To choose an appropriate k0 value, we involve sub-

stantive knowledge, independent of sequence similarity

estimates, namely, knowledge of functional activities of the

proteins under consideration. Each HPF is supposed to

have a function (for examples of function see Table 2

below), though unfortunately the functions of most proteins

available are still unknown. When the functions are known,

however, we can use knowledge of which HPFs have

similar functions and which do not. Two proteins are

considered to have similar functions if they are consistently

named between the herpesvirus genomes and/or they share

the same known function. Such proteins should therefore

belong to the same APF. Two proteins should not belong to

the same HPF if they have different functions. Therefore,

HPFs with known function should be identified to form

pairs of those with clearly similar function and those whose
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functions clearly differ (this may not necessarily be a

straightforward exercise because authors of different sub-

missions to protein databases tend to use different

terminologies).

Sequence similarity values should be high between

functionally similar sequences and should be low between

sequences of proteins with different functions. The simi-

larity shift value should therefore be chosen so that simi-

larities between HPFs with different functions become

negative after the shift, while those between functionally

similar HPFs remain positive. To implement this idea, we

analysed 287 available pairs of HPFs with known function

and positive mbc similarity values. Among them, no pair

with different functions has an mbc similarity value greater

than 0.66, which should imply that the shift value

k0 = 0.67 confers specificity for the production of APFs.

Unfortunately, the situation is less clear-cut for func-

tionally similar proteins. Out of the 86 such pairs available,

there are 24 pairs (28%) for which their similarity value is

less than 0.67. Thus for k0 = 0.67, 28% of the functionally

similar pairs will not be identified as such, suggesting that

with this similarity shift the method would lack sensitivity.

To choose a similarity shift that minimises the error in

assigning negative and positive similarity values, one needs

to compare the distribution of similarity values for the set

of functionally similar pairs with that for the set of func-

tionally dissimilar pairs. As Fig. 4 shows, the graphs

intersect when the mbc similarity value is 0.42. The num-

ber of functionally similar pairs whose similarity is less

than 0.42, decreases to 11 (from 24 at k0 = 0.67), whereas

the number of non-synonymous pairs whose similarity is

higher than 0.42 increases to 7 (from 0 at k0 = 0.67); this

yields the minimum summary error rate of 16% when

k0 = 0.42.

Thus external knowledge of functionally similar or

dissimilar pairs of HPFs supplies us with two reasonable

candidates for the similarity shift value:

1. k0 = 0.67 to guarantee specificity so that functionally

dissimilar HPFs will not be clustered together, and

Table 2 Comparison of the lists of functions in the herpesvirus common ancestor between the previously determined ancestor D-HUCA [9, 20]

(last two columns) and that resulting from mapping our HPF/APFs (first four columns), with function descriptions taken from VIDA

Mapping A/

HPF

Function Description HSV-1

Gene

D-HUCA

Peripheral Enzymes

HUCA 8 Nucleotide repair/

metabolism

uracil-DNA glycosylase, HHV-1 UL2 UL2 Uracil-DNA glycosylase

HUCA 24 Nucleotide repair

metabolism

RNA reductase large subunit, HSV-1

UL39

UL39 RNA reductase; large subunit

HUCA 33 Nucleotide repair

metabolism

RNA reductase small subunit, HHV-1

UL40

UL40 RNA reductase small subunit

HUCA APF

10

Nucleotide repair/
metabolism

thymidine kinase UL23 Thymidine Kinase

2

27 thymidine kinase

HUCA 43 Nucleotide repair/

metabolism

dUTPase, HHV-8 ORF54 UL50 dUTPase

Surface and Membrane

HUCA 20 Membrane glycoprotein glycoprotein M, HHV-1 UL10 UL10 Glycoprotein M; complexed with

glycoprotein N

HUCA 3 Membrane glycoprotein glycoprotein B, HHV-1 UL27 UL27 Glycoprotein B

HUCA APF 3 UL22 Glycoprotein H; comp- lexed with

glycoprotein L42 Membrane/glycoprotein glycoprotein H, HHV-1 UL22

12 glycoprotein H, HHV-8 ORF22

531 glycoprotein H, HHV-8 ORF22

Node 32 267 Virion protein envelope protein, HHV-1 UL49A UL49A Glycoprotein N; complexed with

glycoprotein M

ALPHA 47 Membrane glycoprotein glycoprotein L, HHV-1 UL1 UL1 Glycoprotein L; complexed with

glycoprotein HBETA 50 glycoprotein L, HHV-5 UL115

GAMMA 114 glycoprotein L, HHV-8 ORF47

GAMMA 296 glycoprotein L, MuHV-4 ORF47
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2. k0 = 0.42 to ensure the minimum misclassification

error rate.

These two similarity shift values lead to somewhat

different, but fairly compatible clusterings of the set of 740

HPFs under consideration. There are 80 APF clusters

comprising 180 original HPFs, leaving 560 HPFs unclu-

stered when k0 = 0.67. There are 102 APF clusters over

249 original HPFs, leaving 491 HPFs unclustered when

k0 = 0.42. The first 80 clusters extracted when k0 = 0.42

correspond one-to-one to the 80 clusters obtained when

k0 = 0.67. All 22 of the additional clusters extracted when

k0 = 0.42 are doublets with mbc similarity values between

0.50 and 0.62 (implying that there is a gap in mbc similarity

values between 0.42 and 0.50).

The aggregation found when k0 = 0.67 suggests

560 ? 80 = 640 APFs altogether, whereas k0 = 0.42

leads to a smaller total of 491 ? 102 = 593. Which one is

more appropriate? Probably that which better accords with

the substantive knowledge.

4 Advancing proteome knowledge

4.1 Evolutionary histories of HPFs

For the following analysis, we utilise the evolutionary

histories of HPFs over the evolutionary tree. These histo-

ries have been derived using our algorithm PARS imple-

menting the principle of maximum parsimony [24] in a

rather straightforward way, because an overwhelming

majority of the herpesvirus genome HPFs are consistent

with the topology of the tree, each occurring in a subtree

with just a few gaps.

Only for 17 of the HPFs did the PARS-reconstructed

histories involve more than one gain, thus indicating pos-

sible horizontal transfers. This is obviously a very con-

servative estimate, as it is based only on cases of clear-cut

deviation from parsimony; a recent paper [12] found a

larger number of possible cases of horizontal transfer by

using a different method that takes into account atypical

fragments.

The reconstructed histories supply us with the recon-

structed HPF contents of all the genome ancestors on the

tree. Of these, currently the most useful are reconstructions

of the most ancient genomes, the ancestors of superfamilies

a,b and c, as well as the more universal common ancestors,

HUCA and bc. This is because the properties of herpes-

virus species are somewhat better understood at this level.

The multitude of reconstructed histories may provide an

additional criterion for choosing an appropriate level of

aggregation. This additional criterion is the consistency

between the histories and substantive knowledge.

The reconstructions of the five ancestors in terms of the

APFs found at the two similarity shift values, 0.42 and

0.67, are essentially the same. The only exception is the

common ancestor of the a superfamily, which gains three

more APFs when k0 decreases from 0.67 to 0.42. These

are: (1) APF81 comprised of HPFs 9 and 504, both of

glycoprotein C; (2) APF82 comprised of HPF 38 and HPF

736, both of glycoprotein I; and (3) APF84 comprised of

HPF 47 and HPF 205, both of glycoprotein L. Unfortu-

nately, with the current state of substantive knowledge, we

cannot interpret the phenomenon of simultaneously gaining

these three glycoprotein families in terms of a herpesvirus

properties alone.

We can, however, examine the mutual positions of

genes encoding these proteins within the circular structures

of the virus genomes. We find that, in all of the 13 genomes

in our data belonging to the a superfamily, the gene

encoding glycoprotein E always immediately precedes that

encoding glycoprotein I. This, by itself, may be considered

a strong indication of the existence of some mechanism,

involving both glycoproteins, that was already developed

in the a ancestor. Moreover, for both k0 = 0.67 and

k0 = 0.42, the APF comprised of HPF 26 and HPF 301,

which both correspond to glycoprotein E, has been mapped

by the PARS algorithm to the node corresponding to the a
ancestor [26]. This leads us to conclude that glycoprotein I

must also be present in the a ancestor. HPFs 38 and 736,

both corresponding to glycoprotein I, are aggregated

together as APF82 only when k0 = 0.42, but not when

k0 = 0.67. However, neither HPF is mapped to the a
ancestor node, whereas APF82 is. This implies that

k0 = 0.42 is more in agreement with the knowledge gained

from the reconstructed histories than is k0 = 0.67. Addi-

tional supporting evidence comes from the glycoprotein D
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Fig. 4 Empirical percentage frequency functions (y-values) for the

sets of functionally similar pairs (solid line) and pairs with different

functions (dashed line). The x-values represent the mbc similarity
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APF, comprising HPF 4 and HPF 45 for both similarity

shift values, which is also mapped to the a ancestor.

Moreover, the corresponding gene immediately follows

that of glycoprotein I in 11 of the 13 genomes in the a
superfamily (in two genomes, CeHV-7 and HHV-3, the

preceding gene corresponds to protein kinase rather than

glycoprotein D, which itself may lead to some speculations

of possible mechanisms underlying such a substitution in

the clade).

4.2 Herpesprotein ancestors

The analysis of glycoproteins in the reconstructed ancestor

of the a superfamily leads us to accept the value k0 = 0.42

and, thus, the corresponding number of protein families,

after aggregation, is 593. One can now draw structural

conclusions from the mapping of the aggregate families to

the evolutionary tree; some of these are presented below.

According to our reconstruction, HUCA, the common

ancestor of herpesviruses, should comprise 45 HPFs

aggregated to 29 APFs. These are well-studied proteins

with only three of the participating families, HPFs 17, 23

and 107, of unknown function. Our HUCA is consistent

with D-HUCA, the reconstracted ancestor in [9, 10], but

does not include all the protein families assigned to D-

HUCA, which indicates that more information needs to be

taken into consideration in our computation.

Typical relations between our mapping results and D-

HUCA are illustrated in Table 2. One can see that APF10

and APF3 have been mapped to HUCA, although their

constituent HPFs were not. On the other hand, from the last

rows of the table, we see that the glycoprotein L HPFs fail

to aggregate and move from the a, b and c ancestors into

HUCA.

Let us examine these HPFs in greater detail. The three

ancestors, of the a-, b-, and c families, all contain a gly-

coprotein L, thus suggesting that the corresponding gene

may have been present in HUCA as well. However, the

corresponding HPFs, 47 (together with 205), 50 and 296,

have no significant sequence similarity, and thus cannot be

combined together computationally, even by using the

majority lists. Yet, at the genome organisation level,

illustrated in Fig. 5, each of the glycoprotein L genes

immediately precedes the corresponding Uracil-DNA gly-

cosylase gene, which was mapped to HUCA by PARS.

This suggests that these are indeed common ancestral

genes, just that they have undergone sequence change to

such an extent that sequence similarity is no longer suffi-

cient to assign homology. Assigning the corresponding

gene UL2 to D-HUCA was based on additional experi-

mental evidence that the glycoprotein L proteins in HPFs

47, 50 and 296 functionally complex with glycoprotein H

in the a-, b-, and c families, respectively [10] (In Fig. 5 the

denotations of the submission authors are used—UL2, U83

and ORF46 are synonymous.).

Of the other four superfamily ancestors in our study, a,

bc,b and c, according to our reconstructions, only the

contents of the a superfamily have been relatively well

studied. Of the 33 HPFs gained there, only 9 are of

unknown function. This pattern is not repeated for the other

ancestors. For only 2 of the 10 genes gained in the bc
ancestor is the function known, and similarly for only 10

out of 31 for the b-ancestor, and 9 out of 32 for the c-

ancestor. Together, at these three ancestors, bc, b and c,

there were 73 gains of which 52, more than 70%, are of

unknown function. This indicates that, so far, researchers

have tended to concentrate their efforts on common fea-

tures of all the herpesviridae. The mechanisms separating

the three superfamilies, especially those for b and c, are yet

to be investigated. Our reconstructions give clear indica-

tions of what proteins should be studied next.

5 Conclusion

Clustering is an activity purported to help in enhancing

knowledge of the field to which the data relate. Typically,

this comes via a set of features assigned to the entities that

are to be clustered; the features reflect knowledge and are

to be used in interpreting results of clustering. In bioin-

formatics, especially proteomic studies, entities are fre-

quently supplied only with their similarities, and are

lacking sensible features to consider when interpreting the

results. In such a situation, data recovery clustering sup-

plies a reasonable device for reflecting on the substantive

knowledge: the soft similarity threshold that serves as the

similarity shift value. This value determines other cluster-

ing parameters such as the number of clusters. The sub-

stantive knowledge can produce two sets of pairs of

entities: those that should and those that should not be

ALPHA

BETA

GAMMA

glycoprotein L  /  UL1

glycoprotein L  /  U82

glycoprotein L  /  ORF47 glycosylase   /  ORF46

glycosylase   /  UL2

glycosylase   / U83

Fig. 5 Positional homology between glycoprotein L sites in the

herpesvirus superfamilies a, b and c. The homology suggests that the

glycoprotein L gene co-functions with the glycosylase gene and thus

the former, like the latter, should be mapped to HUCA
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assigned to the same clusters. This may lead to signifi-

cantly narrowing the choice of reasonable threshold values.

We further showed that in a situation in which there is an

independent interpretation device, such as the reconstruc-

tion of the evolutionary history of the protein family cor-

responding to a cluster, the clusters could be further

aggregated by using gene arrangement data.

Using the above, we not only developed a computational

approach to building HPFs, but also produced biologically

relevant results, such as the hypothetical contents of the a,

b and c ancestors, including the noted link between the I, E

and D glycoproteins in the a ancestor.

A possible direction for further work could be the

application of similar principles for clustering and inter-

preting protein families in other genomic databases.

Although most of the effort in clustering protein sequences

goes into applying and testing the clustering algorithm

against a protein-fold family database such as SCOP, this

predictably does not yield good results (see, for example,

[31]). The reason for this is that the sequence similarity is

not enough to uncover the homology. Our approach, how-

ever, considerably narrows down the field by using only a

set of related genomes. This allows us to utilise additional

information such as phylogeny, functional similarity and

gene arrangement. To expand this approach to other areas,

one needs a clustering interpretation tool, which is not

feasible unless knowledge of the proteome is appropriately

structured, for example, by means of a reliable evolutionary

tree. Another issue that may hinder this approach is that of

functional similarity. In larger genomes, paralogous

sequences belonging to the same HPF may bear different

functions; this would make it more difficult to choose a

separating scale shift value—but this would depend on the

database: for example, all proteins of the same HPF in the

COG database [38] are assigned the same function, in spite

of the fact that there are paralogs among them. The possi-

bility of systematically using gene arrangement as addi-

tional information should also be further explored.
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